A truth table sets out all possible truth value combinations for the simple component statements and shows each value of the compont statement.

AND

pqp ∧ q
TTT
TFF
FTF
FFF

OR (Inclusive)

pqp ∨ q
TTT
TFT
FTT
FFF

OR (Exclusive)

pqp ⊻ q
TTF
TFT
FTT
FFF

IMPLICATION

pqp → q
TTT
TFF
FTT
FFT

IFF

pqp ↔ q
TTT
TFF
FTF
FFT

Tautologies and Contradictions

Tautologies and contradictions can be used to construct arguments and proofs.

p¬pp ∨ ¬p
TFT
FTT

p ∨ ¬p is an example of a Tautology. p ∧ ¬p is an example of a contradiction since it cannot be true (whatever value p assumes).

See Propositonal Logic